

HBP Validation Framework - Python Client: Documentation

A Python package for working with the Human Brain Project Model Validation Framework.

Andrew Davison and Shailesh Appukuttan, CNRS, 2017

License: BSD 3-clause, see LICENSE.txt

Quick Overview

We discuss here some of the terms used in this documentation.

	Model

	A Model or Model description consists of all the information pertaining to a
model excluding details of the source code (i.e. implementation). The model
would specify metadata describing the model type and its domain of utility.
The source code is specified via the model instance (see below).

	Model Instance

	This defines a particular version of a model by specifying the location of
the source code for the model. A model may have multiple versions
(model instances) which could vary, for example, in values of their
biophysical parameters. Improvements and updates to a model would
be considered as different versions (instances) of that particular model.

	Test

	A Test or Test definition consists of all the information pertaining to a
test excluding details of the source code (i.e. implementation). The test
would specify metadata defining its domain of utility along with other info
such as the type of data it handles and the type of score it generates.
The source code is specified via the test instance (see below).

	Test Instance

	This defines a particular version of a test by specifying the location of
the source code for executing the test. A test may have multiple versions
(test instances) which could vary, for example, in the way the simulation
is setup or how the score is evaluated. Improvements in the test code would
be considered as different versions (instances) of that particular test.

	sciunit

	A Python package that handles testing of models.
For more, see: https://github.com/scidash/sciunit

	Result

	The outcome of testing a specific model instance with a specific test
instance. The result would consist of a score, and possibly additionally
output files generated by the test.

More detailed tutorials will be published soon.

For any queries, you can contact:

	Andrew Davison: andrew.davison@unic.cnrs-gif.fr

	Shailesh Appukuttan: shailesh.appukuttan@unic.cnrs-gif.fr

General Info

	From the above descriptions, it can be identified that running a particular
test for a model under the validation framework is more accurately described as
the running of a specific test instance for a specific model instance.

	When running a test, the test metadata and test instance info is typically
retrieved from the validation framework. This involves authenticating your HBP
login credentials.

	The model being tested can be registered on the Model Catalog beforehand,
or asked to be registered automatically after the test is complete, just
before registering the result on the validation framework.

	Registration of the model and its test results also require authenticating
your HBP login credentials.

	It should be noted that an HBP account can be created even by non-HBP users.
For more information, please visit: https://services.humanbrainproject.eu/oidc/account/request

	Collabs on the HBP Collaboratory can be either public or private. Public
Collabs can be accessed by all registered users, whereas private Collabs
require the user to be granted permission for access.

	The Model Catalog and the Validation Framework apps can be added to any
Collab. A Collab may have multiple instances of these apps. The apps require
to be configured by setting the provided filters appropriately before they
can be used. These filters restrict the type of data displayed in that particular
instance of the app.

	All tests are public, i.e. every test registered on the Validation Framework
can be seen by all users.

	Models are created inside specific Collab instances of the Model Catalog app.
The particular app inside which a model was created is termed its host app.
Similarly, the Collab containing the host app is termed the host Collab.

	Models can be set as public/private. If public, the model and its associated
results are available to all users. If private, it can only be seen by users who
have access to the host Collab. See table below for summary of access privileges.

	No information can be deleted from the Model Catalog and Validation Framework
apps. In future, an option to hide data would be implemented. This would offer
users functionality similar to deleting, but with the data being retained in the
database back-end.

	Models, model instances, tests and test instances can be edited as long as
there are no results associated with them. Results can never be edited!

 	
 	Collab (Private/Public)

 	Collab Member
 	Not Collab Member

 	View (GET)
 	Create (POST)
 	Edit (PUT)
 	View (GET)
 	Create (POST)
 	Edit (PUT)

 	Model
 	Private
 	Yes
 	Yes
 	Yes
 	No
 	No
 	No

 	Public
 	Yes
 	Yes
 	Yes
 	Yes
 	No
 	No

Regarding HBP Authentication

The Python Client for the Validation Framework attempts to simplify the HBP
authentication process. It does this as follows:

On first use, the users have the following options (in order of priority):

	Setting an environment variable named HBP_PASS with your HBP password.
On Linux, this can be done as:

export HBP_PASS='putyourpasswordhere'

Environment variables set like this are only stored temporally. When you exit
the running instance of bash by exiting the terminal, they get discarded. To
save this permanentally, write the above command into ~/.bashrc or ~/.profile
(you might need to reload these files by, for example, source ~/.bashrc)

	Enter your HBP password when prompted by the Python Client.

Once you do either of the two, the Python Client will save the retrieved token
locally on your system. Henceforth, this token would be used for all subsequent
requests that require authentication. This approach has been found to significantly
speed-up the processing of the requests. If the authentication token expires, or is
found invalid, then the user would again be give the above two options.

TestLibrary

	
class hbp_validation_framework.TestLibrary(username=None, password=None, environment='production')

	Client for the HBP Validation Test library.

The TestLibrary client manages all actions pertaining to tests and results.
The following actions can be performed:

	Action

	Method

	Get test definition

	get_test_definition()

	Get test as Python (sciunit) class

	get_validation_test()

	List test definitions

	list_tests()

	Add new test definition

	add_test()

	Edit test definition

	edit_test()

	Get test instances

	get_test_instance()

	List test instances

	list_test_instances()

	Add new test instance

	add_test_instance()

	Edit test instance

	edit_test_instance()

	Get valid attribute values

	get_attribute_options()

	Get test result

	get_result()

	List test results

	list_results()

	Register test result

	register_result()

	Parameters

	
	username (string) – Your HBP Collaboratory username. Not needed in Jupyter notebooks within the HBP Collaboratory.

	password (string, optional) – Your HBP Collaboratory password; advisable to not enter as plaintext.
If left empty, you would be prompted for password at run time (safer).
Not needed in Jupyter notebooks within the HBP Collaboratory.

	environment (string, optional) – Used to indicate whether being used for development/testing purposes.
Set as production as default for using the production system,
which is appropriate for most users. When set to dev, it uses the
development system. Other environments, if required, should be defined
inside a json file named config.json in the working directory. Example:

	{

	
	“prod”: {

	“url”: “https://validation-v1.brainsimulation.eu”,
“client_id”: “3ae21f28-0302-4d28-8581-15853ad6107d”

},
“dev_test”: {

”url”: “https://localhost:8000”,
“client_id”: “90c719e0-29ce-43a2-9c53-15cb314c2d0b”,
“verify_ssl”: false

}

}

Examples

Instantiate an instance of the TestLibrary class

>>> test_library = TestLibrary(hbp_username)

	
get_test_definition(test_path='', test_id='', alias='')

	Retrieve a specific test definition.

A specific test definition can be retrieved from the test library
in the following ways (in order of priority):

	load from a local JSON file specified via test_path

	specify the test_id

	specify the alias (of the test)

	Parameters

	
	test_path (string) – Location of local JSON file with test definition.

	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string) – User-assigned unique identifier associated with test definition.

Note

Also see: get_validation_test()

	Returns

	Information about the test.

	Return type

	dict

Examples

>>> test = test_library.get_test_definition("/home/shailesh/Work/dummy_test.json")
>>> test = test_library.get_test_definition(test_id="7b63f87b-d709-4194-bae1-15329daf3dec")
>>> test = test_library.get_test_definition(alias="CDT-6")

	
get_validation_test(test_path='', instance_path='', instance_id='', test_id='', alias='', version='', **params)

	Retrieve a specific test instance as a Python class (sciunit.Test instance).

A specific test definition can be specified
in the following ways (in order of priority):

	load from a local JSON file specified via test_path and instance_path

	specify instance_id corresponding to test instance in test library

	specify test_id and version

4. specify alias (of the test) and version
Note: for (3) and (4) above, if version is not specified,

then the latest test version is retrieved

	Parameters

	
	test_path (string) – Location of local JSON file with test definition.

	instance_path (string) – Location of local JSON file with test instance metadata.

	instance_id (UUID) – System generated unique identifier associated with test instance.

	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string) – User-assigned unique identifier associated with test definition.

	version (string) – User-assigned identifier (unique for each test) associated with test instance.

	**params – Additional keyword arguments to be passed to the Test constructor.

Note

To confirm the priority of parameters for specifying tests and instances,
see get_test_definition() and get_test_instance()

	Returns

	Returns a sciunit.Test instance.

	Return type

	sciunit.Test

Examples

>>> test = test_library.get_validation_test(alias="CDT-6", instance_id="36a1960e-3e1f-4c3c-a3b6-d94e6754da1b")

	
list_tests(**filters)

	Retrieve a list of test definitions satisfying specified filters.

The filters may specify one or more attributes that belong
to a test definition. The following test attributes can be specified:

	name

	alias

	author

	species

	age

	brain_region

	cell_type

	data_modality

	test_type

	score_type

	model_scope

	abstraction_level

	data_type

	publication

	Parameters

	**filters (variable length keyword arguments) – To be used to filter test definitions from the test library.

	Returns

	List of model descriptions satisfying specified filters.

	Return type

	list

Examples

>>> tests = test_library.list_tests()
>>> tests = test_library.list_tests(test_type="single cell activity")
>>> tests = test_library.list_tests(test_type="single cell activity", cell_type="Pyramidal Cell")

	
add_test(name='', alias=None, version='', author='', species='', age='', brain_region='', cell_type='', data_modality='', test_type='', score_type='', protocol='', data_location='', data_type='', publication='', repository='', path='')

	Register a new test on the test library.

This allows you to add a new test to the test library. A test instance
(version) needs to be specified when registering a new test.

	Parameters

	
	name (string) – Name of the test definition to be created.

	alias (string, optional) – User-assigned unique identifier to be associated with test definition.

	version (string) – User-assigned identifier (unique for each test) associated with test instance.

	author (string) – Name of person creating the test.

	species (string) – The species from which the data was collected.

	age (string) – The age of the specimen.

	brain_region (string) – The brain region being targeted in the test.

	cell_type (string) – The type of cell being examined.

	data_modality (string) – Specifies the type of observation used in the test.

	test_type (string) – Specifies the type of the test.

	score_type (string) – The type of score produced by the test.

	protocol (string) – Experimental protocol involved in obtaining reference data.

	data_location (string) – URL of file containing reference data (observation).

	data_type (string) – The type of reference data (observation).

	publication (string) – Publication or comment (e.g. “Unpublished”) to be associated with observation.

	repository (string) – URL of Python package repository (e.g. GitHub).

	path (string) – Python path (not filesystem path) to test source code within Python package.

	Returns

	UUID of the test instance that has been created.

	Return type

	UUID

Examples

>>> test = test_library.add_test(name="Cell Density Test", alias="", version="1.0", author="Shailesh Appukuttan",
 species="Mouse (Mus musculus)", age="TBD", brain_region="Hippocampus", cell_type="Other",
 data_modality="electron microscopy", test_type="network structure", score_type="Other", protocol="Later",
 data_location="collab://Validation Framework/observations/test_data/cell_density_Halasy_1996.json",
 data_type="Mean, SD", publication="Halasy et al., 1996",
 repository="https://github.com/appukuttan-shailesh/morphounit.git", path="morphounit.tests.CellDensityTest")

	
edit_test(name=None, test_id='', alias=None, author=None, species=None, age=None, brain_region=None, cell_type=None, data_modality=None, test_type=None, score_type=None, protocol=None, data_location=None, data_type=None, publication=None)

	Edit an existing test in the test library.

To update an existing test, the test_id must be provided. Any of the
other parameters may be updated.
Only the parameters being updated need to be specified.

	Parameters

	
	name (string) – Name of the test definition.

	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string, optional) – User-assigned unique identifier to be associated with test definition.

	author (string) – Name of person who created the test.

	species (string) – The species from which the data was collected.

	age (string) – The age of the specimen.

	brain_region (string) – The brain region being targeted in the test.

	cell_type (string) – The type of cell being examined.

	data_modality (string) – Specifies the type of observation used in the test.

	test_type (string) – Specifies the type of the test.

	score_type (string) – The type of score produced by the test.

	protocol (string) – Experimental protocol involved in obtaining reference data.

	data_location (string) – URL of file containing reference data (observation).

	data_type (string) – The type of reference data (observation).

	publication (string) – Publication or comment (e.g. “Unpublished”) to be associated with observation.

Note

Test instances cannot be edited here.
This has to be done using edit_test_instance()

	Returns

	(Verify!) UUID of the test instance that has been edited.

	Return type

	UUID

Examples

	test = test_library.edit_test(name=”Cell Density Test”, test_id=”7b63f87b-d709-4194-bae1-15329daf3dec”, alias=”CDT-6”, author=”Shailesh Appukuttan”, publication=”Halasy et al., 1996”,

	species=”Mouse (Mus musculus)”, brain_region=”Hippocampus”, cell_type=”Other”, age=”TBD”, data_modality=”electron microscopy”,
test_type=”network structure”, score_type=”Other”, protocol=”To be filled sometime later”, data_location=”collab://Validation Framework/observations/test_data/cell_density_Halasy_1996.json”, data_type=”Mean, SD”)

	
delete_test(test_id='', alias='')

	ONLY FOR SUPERUSERS: Delete a specific test definition by its test_id or alias.

A specific test definition can be deleted from the test library, along with all
associated test instances, in the following ways (in order of priority):

	specify the test_id

	specify the alias (of the test)

	Parameters

	
	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string) – User-assigned unique identifier associated with test definition.

Note

	This feature is only for superusers!

Examples

>>> test_library.delete_test(test_id="8c7cb9f6-e380-452c-9e98-e77254b088c5")
>>> test_library.delete_test(alias="B1")

	
get_test_instance(instance_path='', instance_id='', test_id='', alias='', version='')

	Retrieve a specific test instance definition from the test library.

A specific test instance can be retrieved
in the following ways (in order of priority):

	load from a local JSON file specified via instance_path

	specify instance_id corresponding to test instance in test library

	specify test_id and version

4. specify alias (of the test) and version
Note: for (3) and (4) above, if version is not specified,

then the latest test version is retrieved

	Parameters

	
	instance_path (string) – Location of local JSON file with test instance metadata.

	instance_id (UUID) – System generated unique identifier associated with test instance.

	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string) – User-assigned unique identifier associated with test definition.

	version (string) – User-assigned identifier (unique for each test) associated with test instance.

	Returns

	Information about the test instance.

	Return type

	dict

Examples

>>> test_instance = test_library.get_test_instance(test_id="7b63f87b-d709-4194-bae1-15329daf3dec", version="1.0")
>>> test_instance = test_library.get_test_instance(test_id="7b63f87b-d709-4194-bae1-15329daf3dec")

	
list_test_instances(instance_path='', test_id='', alias='')

	Retrieve list of test instances belonging to a specified test.

This can be retrieved in the following ways (in order of priority):

	load from a local JSON file specified via instance_path

	specify test_id

	specify alias (of the test)

	Parameters

	
	instance_path (string) – Location of local JSON file with test instance metadata.

	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string) – User-assigned unique identifier associated with test definition.

	Returns

	Information about the test instances.

	Return type

	dict[]

Examples

>>> test_instances = test_library.list_test_instances(test_id="8b63f87b-d709-4194-bae1-15329daf3dec")

	
add_test_instance(test_id='', alias='', repository='', path='', version='', description='', parameters='')

	Register a new test instance.

This allows to add a new instance to an existing test in the test library.
The test_id needs to be specified as input parameter.

	Parameters

	
	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string) – User-assigned unique identifier associated with test definition.

	repository (string) – URL of Python package repository (e.g. github).

	path (string) – Python path (not filesystem path) to test source code within Python package.

	version (string) – User-assigned identifier (unique for each test) associated with test instance.

	description (string, optional) – Text describing this specific test instance.

	parameters (string, optional) – Any additional parameters to be submitted to test, or used by it, at runtime.

	Returns

	UUID of the test instance that has been created.

	Return type

	UUID

Note

	alias is not currently implemented in the API; kept for future use.

	TODO: Either test_id or alias needs to be provided, with test_id taking precedence over alias.

Examples

>>> response = test_library.add_test_instance(test_id="7b63f87b-d709-4194-bae1-15329daf3dec",
 repository="https://github.com/appukuttan-shailesh/morphounit.git",
 path="morphounit.tests.CellDensityTest",
 version="3.0")

	
edit_test_instance(instance_id='', test_id='', alias='', repository=None, path=None, version=None, description=None, parameters=None)

	Edit an existing test instance.

This allows to edit an instance of an existing test in the test library.
The test instance can be specified in the following ways (in order of priority):

	specify instance_id corresponding to test instance in test library

	specify test_id and version

	specify alias (of the test) and version

Only the parameters being updated need to be specified. You cannot
edit the test version in the latter two cases. To do so,
you must employ the first option above. You can retrieve the instance_id
via get_test_instance()

	Parameters

	
	instance_id (UUID) – System generated unique identifier associated with test instance.

	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string) – User-assigned unique identifier associated with test definition.

	repository (string) – URL of Python package repository (e.g. github).

	path (string) – Python path (not filesystem path) to test source code within Python package.

	version (string) – User-assigned identifier (unique for each test) associated with test instance.

	description (string, optional) – Text describing this specific test instance.

	parameters (string, optional) – Any additional parameters to be submitted to test, or used by it, at runtime.

	Returns

	UUID of the test instance that has was edited.

	Return type

	UUID

Examples

>>> response = test_library.edit_test_instance(test_id="7b63f87b-d709-4194-bae1-15329daf3dec",
 repository="https://github.com/appukuttan-shailesh/morphounit.git",
 path="morphounit.tests.CellDensityTest",
 version="4.0")

	
delete_test_instance(instance_id='', test_id='', alias='', version='')

	ONLY FOR SUPERUSERS: Delete an existing test instance.

This allows to delete an instance of an existing test in the test library.
The test instance can be specified in the following ways (in order of priority):

	specify instance_id corresponding to test instance in test library

	specify test_id and version

	specify alias (of the test) and version

	Parameters

	
	instance_id (UUID) – System generated unique identifier associated with test instance.

	test_id (UUID) – System generated unique identifier associated with test definition.

	alias (string) – User-assigned unique identifier associated with test definition.

	version (string) – User-assigned unique identifier associated with test instance.

Note

	This feature is only for superusers!

Examples

>>> test_library.delete_model_instance(test_id="8c7cb9f6-e380-452c-9e98-e77254b088c5")
>>> test_library.delete_model_instance(alias="B1", version="1.0")

	
get_attribute_options(param='')

	Retrieve valid values for test attributes.

Will return the list of valid values (where applicable) for various test attributes.
The following test attributes can be specified:

	cell_type

	test_type

	score_type

	brain_region

	data_modalities

	species

If an attribute is specified, then only values that correspond to it will be returned,
else values for all attributes are returned.

	Parameters

	param (string, optional) – Attribute of interest

	Returns

	Dictionary with key(s) as attribute(s), and value(s) as list of valid options.

	Return type

	dict

Examples

>>> data = test_library.get_attribute_options()
>>> data = test_library.get_attribute_options("cell_type")

	
get_result(result_id='', order='')

	Retrieve a test result.

This allows to retrieve the test result score and other related information.
The result_id needs to be specified as input parameter.

	Parameters

	
	result_id (UUID) – System generated unique identifier associated with result.

	order (string, optional) – Determines how the result should be structured. Valid values are
“test”, “model” or “”. Default is “” and provides concise result summary.

	Returns

	Information about the result retrieved.

	Return type

	dict

Examples

>>> result = test_library.get_result(result_id="901ac0f3-2557-4ae3-bb2b-37617312da09")
>>> result = test_library.get_result(result_id="901ac0f3-2557-4ae3-bb2b-37617312da09", order="test")

	
list_results(order='', **filters)

	Retrieve test results satisfying specified filters.

This allows to retrieve a list of test results with their scores
and other related information.

	Parameters

	
	order (string, optional) – Determines how the result should be structured. Valid values are
“test”, “model” or “”. Default is “” and provides concise result summary.

	**filters (variable length keyword arguments) – To be used to filter the results metadata.

	Returns

	Information about the results retrieved.

	Return type

	dict

Examples

>>> results = test_library.list_results()
>>> results = test_library.list_results(order="test", test_id="7b63f87b-d709-4194-bae1-15329daf3dec")
>>> results = test_library.list_results(id="901ac0f3-2557-4ae3-bb2b-37617312da09")
>>> results = test_library.list_results(model_version_id="f32776c7-658f-462f-a944-1daf8765ec97", order="test")

	
register_result(test_result, data_store=None, project=None)

	Register test result with HBP Validation Results Service.

The score of a test, along with related output data such as figures,
can be registered on the validation framework.

	Parameters

	
	test_result (sciunit.Score) – a sciunit.Score instance returned by test.judge(model)

	data_store (DataStore) – a DataStore instance, for uploading related data generated by the test run, e.g. figures.

	project (int) – Numeric input specifying the Collab ID, e.g. 8123.
This is used to indicate the Collab where results should be saved.

Note

Source code for this method still contains comments/suggestions from
previous client. To be removed or implemented.

	Returns

	UUID of the test result that has been created.

	Return type

	UUID

Examples

>>> score = test.judge(model)
>>> response = test_library.register_result(test_result=score)

	
delete_result(result_id='')

	ONLY FOR SUPERUSERS: Delete a result on the validation framework.

This allows to delete an existing result info on the validation framework.
The result_id needs to be specified as input parameter.

	Parameters

	result_id (UUID) – System generated unique identifier associated with result.

Note

	This feature is only for superusers!

Examples

>>> model_catalog.delete_result(result_id="2b45e7d4-a7a1-4a31-a287-aee7072e3e75")

ModelCatalog

	
class hbp_validation_framework.ModelCatalog(username=None, password=None, environment='production')

	Client for the HBP Model Catalog.

The ModelCatalog client manages all actions pertaining to models.
The following actions can be performed:

	Action

	Method

	Get model description

	get_model()

	List model descriptions

	list_models()

	Register new model description

	register_model()

	Edit model description

	edit_model()

	Get valid attribute values

	get_attribute_options()

	Get model instance

	get_model_instance()

	Download model instance

	download_model_instance()

	List model instances

	list_model_instances()

	Add new model instance

	add_model_instance()

	Find model instance; else add

	find_model_instance_else_add()

	Edit existing model instance

	edit_model_instance()

	Get figure from model description

	get_model_image()

	List figures from model description

	list_model_images()

	Add figure to model description

	add_model_image()

	Edit existing figure metadata

	edit_model_image()

	Parameters

	
	username (string) – Your HBP Collaboratory username. Not needed in Jupyter notebooks within the HBP Collaboratory.

	password (string, optional) – Your HBP Collaboratory password; advisable to not enter as plaintext.
If left empty, you would be prompted for password at run time (safer).
Not needed in Jupyter notebooks within the HBP Collaboratory.

	environment (string, optional) – Used to indicate whether being used for development/testing purposes.
Set as production as default for using the production system,
which is appropriate for most users. When set to dev, it uses the
development system. Other environments, if required, should be defined
inside a json file named config.json in the working directory. Example:

	{

	
	“prod”: {

	“url”: “https://validation-v1.brainsimulation.eu”,
“client_id”: “3ae21f28-0302-4d28-8581-15853ad6107d”

},
“dev_test”: {

”url”: “https://localhost:8000”,
“client_id”: “90c719e0-29ce-43a2-9c53-15cb314c2d0b”,
“verify_ssl”: false

}

}

Examples

Instantiate an instance of the ModelCatalog class

>>> model_catalog = ModelCatalog(hbp_username)

	
get_model(model_id='', alias='', instances=True, images=True)

	Retrieve a specific model description by its model_id or alias.

A specific model description can be retrieved from the model catalog
in the following ways (in order of priority):

	specify the model_id

	specify the alias (of the model)

	Parameters

	
	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	instances (boolean, optional) – Set to False if you wish to omit the details of the model instances; default True.

	images (boolean, optional) – Set to False if you wish to omit the details of the model images (figures); default True.

	Returns

	Entire model description as a JSON object.

	Return type

	dict

Examples

>>> model = model_catalog.get_model(model_id="8c7cb9f6-e380-452c-9e98-e77254b088c5")
>>> model = model_catalog.get_model(alias="B1")

	
list_models(**filters)

	Retrieve list of model descriptions satisfying specified filters.

The filters may specify one or more attributes that belong
to a model description. The following model attributes can be specified:

	app_id

	name

	alias

	author

	organization

	species

	brain_region

	cell_type

	model_scope

	abstraction_level

	owner

	project

	license

	Parameters

	**filters (variable length keyword arguments) – To be used to filter model descriptions from the model catalog.

	Returns

	List of model descriptions satisfying specified filters.

	Return type

	list

Examples

>>> models = model_catalog.list_models()
>>> models = model_catalog.list_models(app_id="39968")
>>> models = model_catalog.list_models(cell_type="Pyramidal Cell", brain_region="Hippocampus")

	
register_model(app_id='', name='', alias=None, author='', organization='', private=False, species='', brain_region='', cell_type='', model_scope='', abstraction_level='', owner='', project='', license='', description='', instances=[], images=[])

	Register a new model in the model catalog.

This allows you to add a new model to the model catalog. Model instances
and/or images (figures) can optionally be specified at the time of model
creation, or can be added later individually.

	Parameters

	
	app_id (string) – Specifies the ID of the host model catalog app on the HBP Collaboratory.
(the model would belong to this app)

	name (string) – Name of the model description to be created.

	alias (string, optional) – User-assigned unique identifier to be associated with model description.

	author (string) – Name of person creating the model description.

	organization (string, optional) – Option to tag model with organization info.

	private (boolean) – Set visibility of model description. If True, model would only be seen in host app (where created). Default False.

	species (string) – The species for which the model is developed.

	brain_region (string) – The brain region for which the model is developed.

	cell_type (string) – The type of cell for which the model is developed.

	model_scope (string) – Specifies the type of the model.

	abstraction_level (string) – Specifies the model abstraction level.

	owner (string) – Specifies the owner of the model. Need not necessarily be the same as the author.

	project (string) – Can be used to indicate the project to which the model belongs.

	license (string) – Indicates the license applicable for this model.

	description (string) – Provides a description of the model.

	instances (list, optional) – Specify a list of instances (versions) of the model.

	images (list, optional) – Specify a list of images (figures) to be linked to the model.

	Returns

	UUID of the model description that has been created.

	Return type

	UUID

Examples

(without instances and images)

>>> model = model_catalog.register_model(app_id="39968", name="Test Model - B2",
 alias="Model vB2", author="Shailesh Appukuttan", organization="HBP-SP6",
 private=False, cell_type="Granule Cell", model_scope="Single cell model",
 abstraction_level="Spiking neurons",
 brain_region="Basal Ganglia", species="Mouse (Mus musculus)",
 owner="Andrew Davison", project="SP 6.4", license="BSD 3-Clause",
 description="This is a test entry")

(with instances and images)

>>> model = model_catalog.register_model(app_id="39968", name="Test Model - C2",
 alias="Model vC2", author="Shailesh Appukuttan", organization="HBP-SP6",
 private=False, cell_type="Granule Cell", model_scope="Single cell model",
 abstraction_level="Spiking neurons",
 brain_region="Basal Ganglia", species="Mouse (Mus musculus)",
 owner="Andrew Davison", project="SP 6.4", license="BSD 3-Clause",
 description="This is a test entry! Please ignore.",
 instances=[{"source":"https://www.abcde.com",
 "version":"1.0", "parameters":""},
 {"source":"https://www.12345.com",
 "version":"2.0", "parameters":""}],
 images=[{"url":"http://www.neuron.yale.edu/neuron/sites/default/themes/xchameleon/logo.png",
 "caption":"NEURON Logo"},
 {"url":"https://collab.humanbrainproject.eu/assets/hbp_diamond_120.png",
 "caption":"HBP Logo"}])

	
edit_model(model_id='', app_id=None, name=None, alias=None, author=None, organization=None, private=None, cell_type=None, model_scope=None, abstraction_level=None, brain_region=None, species=None, owner='', project='', license='', description=None)

	Edit an existing model on the model catalog.

This allows you to edit a new model to the model catalog.
The model_id must be provided. Any of the other parameters maybe updated.
Only the parameters being updated need to be specified.

	Parameters

	
	model_id (UUID) – System generated unique identifier associated with model description.

	app_id (string) – Specifies the ID of the host model catalog app on the HBP Collaboratory.
(the model would belong to this app)

	name (string) – Name of the model description to be created.

	alias (string, optional) – User-assigned unique identifier to be associated with model description.

	author (string) – Name of person creating the model description.

	organization (string, optional) – Option to tag model with organization info.

	private (boolean) – Set visibility of model description. If True, model would only be seen in host app (where created). Default False.

	species (string) – The species for which the model is developed.

	brain_region (string) – The brain region for which the model is developed.

	cell_type (string) – The type of cell for which the model is developed.

	model_scope (string) – Specifies the type of the model.

	abstraction_level (string) – Specifies the model abstraction level.

	owner (string) – Specifies the owner of the model. Need not necessarily be the same as the author.

	project (string) – Can be used to indicate the project to which the model belongs.

	license (string) – Indicates the license applicable for this model.

	description (string) – Provides a description of the model.

Note

Model instances and images (figures) cannot be edited here.
This has to be done using edit_model_instance() and edit_model_image()

	Returns

	UUID of the model description that has been edited.

	Return type

	UUID

Examples

>>> model = model_catalog.edit_model(app_id="39968", name="Test Model - B2",
 model_id="8c7cb9f6-e380-452c-9e98-e77254b088c5",
 alias="Model-B2", author="Shailesh Appukuttan", organization="HBP-SP6",
 private=False, cell_type="Granule Cell", model_scope="Single cell model",
 abstraction_level="Spiking neurons",
 brain_region="Basal Ganglia", species="Mouse (Mus musculus)",
 owner="Andrew Davison", project="SP 6.4", license="BSD 3-Clause",
 description="This is a test entry")

	
delete_model(model_id='', alias='')

	ONLY FOR SUPERUSERS: Delete a specific model description by its model_id or alias.

A specific model description can be deleted from the model catalog, along with all
associated model instances, images and results, in the following ways (in order of priority):

	specify the model_id

	specify the alias (of the model)

	Parameters

	
	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

Note

	This feature is only for superusers!

Examples

>>> model_catalog.delete_model(model_id="8c7cb9f6-e380-452c-9e98-e77254b088c5")
>>> model_catalog.delete_model(alias="B1")

	
get_attribute_options(param='')

	Retrieve valid values for attributes.

Will return the list of valid values (where applicable) for various attributes.
The following model attributes can be specified:

	cell_type

	brain_region

	model_scope

	abstraction_level

	species

	organization

If an attribute is specified then, only values that correspond to it will be returned,
else values for all attributes are returned.

	Parameters

	param (string, optional) – Attribute of interest

	Returns

	Dictionary with key(s) as attribute(s), and value(s) as list of valid options.

	Return type

	dict

Examples

>>> data = model_catalog.get_attribute_options()
>>> data = model_catalog.get_attribute_options("cell_type")

	
get_model_instance(instance_path='', instance_id='', model_id='', alias='', version='')

	Retrieve an existing model instance.

A specific model instance can be retrieved
in the following ways (in order of priority):

	load from a local JSON file specified via instance_path

	specify instance_id corresponding to model instance in model catalog

	specify model_id and version

	specify alias (of the model) and version

	Parameters

	
	instance_path (string) – Location of local JSON file with model instance metadata.

	instance_id (UUID) – System generated unique identifier associated with model instance.

	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	version (string) – User-assigned identifier (unique for each model) associated with model instance.

	Returns

	Information about the model instance.

	Return type

	dict

Examples

>>> model_instance = model_catalog.get_model_instance(instance_id="a035f2b2-fe2e-42fd-82e2-4173a304263b")

	
download_model_instance(instance_path='', instance_id='', model_id='', alias='', version='', local_directory='.')

	Download files/directory corresponding to an existing model instance.

Files/directory corresponding to a model instance to be downloaded. The model
instance can be specified in the following ways (in order of priority):

	load from a local JSON file specified via instance_path

	specify instance_id corresponding to model instance in model catalog

	specify model_id and version

	specify alias (of the model) and version

	Parameters

	
	instance_path (string) – Location of local JSON file with model instance metadata.

	instance_id (UUID) – System generated unique identifier associated with model instance.

	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	version (string) – User-assigned identifier (unique for each model) associated with model instance.

	local_directory (string) – Directory path (relative/absolute) where files should be downloaded and saved. Default is current location.
Existing files, if any, at the target location will be overwritten!

	Returns

	Absolute path of the downloaded file/directory.

	Return type

	string

Note

Existing files, if any, at the target location will be overwritten!

Examples

>>> file_path = model_catalog.download_model_instance(instance_id="a035f2b2-fe2e-42fd-82e2-4173a304263b")

	
list_model_instances(instance_path='', model_id='', alias='')

	Retrieve list of model instances belonging to a specified model.

This can be retrieved in the following ways (in order of priority):

	load from a local JSON file specified via instance_path

	specify model_id

	specify alias (of the model)

	Parameters

	
	instance_path (string) – Location of local JSON file with model instance metadata.

	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	Returns

	List of dicts containing information about the model instances.

	Return type

	list

Examples

>>> model_instances = model_catalog.list_model_instances(alias="Model vB2")

	
add_model_instance(model_id='', alias='', source='', version='', description='', parameters='', code_format='', hash='', morphology='')

	Register a new model instance.

This allows to add a new instance of an existing model in the model catalog.
The model_id needs to be specified as input parameter.

	Parameters

	
	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	source (string) – Path to model source code repository (e.g. github).

	version (string) – User-assigned identifier (unique for each model) associated with model instance.

	description (string, optional) – Text describing this specific model instance.

	parameters (string, optional) – Any additional parameters to be submitted to model, or used by it, at runtime.

	code_format (string, optional) – Indicates the language/platform in which the model was developed.

	hash (string, optional) – Similar to a checksum; can be used to identify model instances from their implementation.

	morphology (string / list, optional) – URL(s) to the morphology file(s) employed in this model.

	Returns

	UUID of the model instance that has been created.

	Return type

	UUID

Note

	alias is not currently implemented in the API; kept for future use.

	TODO: Either model_id or alias needs to be provided, with model_id taking precedence over alias.

Examples

>>> instance_id = model_catalog.add_model_instance(model_id="196b89a3-e672-4b96-8739-748ba3850254",
 source="https://www.abcde.com",
 version="1.0",
 description="basic model variant",
 parameters="",
 code_format="py",
 hash="",
 morphology="")

	
find_model_instance_else_add(model_obj)

	Find existing model instance; else create a new instance

This checks if the input model object has an associated model instance.
If not, a new model instance is created.

	Parameters

	model_obj (object) – Python object representing a model.

	Returns

	UUID of the existing or created model instance.

	Return type

	UUID

Note

	model_obj is expected to contain the attribute model_instance_uuid,
or both the attributes model_uuid and model_version.

Examples

>>> instance_id = model_catalog.find_model_instance_else_add(model)

	
edit_model_instance(instance_id='', model_id='', alias='', source=None, version=None, description=None, parameters=None, code_format=None, hash=None, morphology=None)

	Edit an existing model instance.

This allows to edit an instance of an existing model in the model catalog.
The model instance can be specified in the following ways (in order of priority):

	specify instance_id corresponding to model instance in model catalog

	specify model_id and version

	specify alias (of the model) and version

Only the parameters being updated need to be specified. You cannot
edit the model version in the latter two cases. To do so,
you must employ the first option above. You can retrieve the instance_id
via get_model_instance()

	Parameters

	
	instance_id (UUID) – System generated unique identifier associated with model instance.

	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	source (string) – Path to model source code repository (e.g. github).

	version (string) – User-assigned identifier (unique for each model) associated with model instance.

	description (string, optional) – Text describing this specific model instance.

	parameters (string, optional) – Any additional parameters to be submitted to model, or used by it, at runtime.

	code_format (string, optional) – Indicates the language/platform in which the model was developed.

	hash (string, optional) – Similar to a checksum; can be used to identify model instances from their implementation.

	morphology (string / list, optional) – URL(s) to the morphology file(s) employed in this model.

	Returns

	UUID of the model instance that has been edited.

	Return type

	UUID

Examples

>>> instance_id = model_catalog.edit_model_instance(instance_id="fd1ab546-80f7-4912-9434-3c62af87bc77",
 source="https://www.abcde.com",
 version="1.0",
 description="passive model variant",
 parameters="",
 code_format="py",
 hash="",
 morphology="")

	
delete_model_instance(instance_id='', model_id='', alias='', version='')

	ONLY FOR SUPERUSERS: Delete an existing model instance.

This allows to delete an instance of an existing model in the model catalog.
The model instance can be specified in the following ways (in order of priority):

	specify instance_id corresponding to model instance in model catalog

	specify model_id and version

	specify alias (of the model) and version

	Parameters

	
	instance_id (UUID) – System generated unique identifier associated with model instance.

	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	version (string) – User-assigned unique identifier associated with model instance.

Note

	This feature is only for superusers!

Examples

>>> model_catalog.delete_model_instance(model_id="8c7cb9f6-e380-452c-9e98-e77254b088c5")
>>> model_catalog.delete_model_instance(alias="B1", version="1.0")

	
get_model_image(image_id='')

	Retrieve image info from a model description.

This allows to retrieve image (figure) info from the model catalog.
The image_id needs to be specified as input parameter.

	Parameters

	image_id (UUID) – System generated unique identifier associated with image (figure).

	Returns

	Information about the image (figure) retrieved.

	Return type

	dict

Examples

>>> model_image = model_catalog.get_model_image(image_id="2b45e7d4-a7a1-4a31-a287-aee7072e3e75")

	
list_model_images(model_id='', alias='')

	Retrieve all images (figures) associated with a model.

This can be retrieved in the following ways (in order of priority):

	specify model_id

	specify alias (of the model)

	Parameters

	
	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	Returns

	List of dicts containing information about the model images (figures).

	Return type

	list

Examples

>>> model_images = model_catalog.list_model_images(model_id="196b89a3-e672-4b96-8739-748ba3850254")

	
add_model_image(model_id='', alias='', url='', caption='')

	Add a new image (figure) to a model description.

This allows to add a new image (figure) to an existing model in the model catalog.
The model_id needs to be specified as input parameter.

	Parameters

	
	model_id (UUID) – System generated unique identifier associated with model description.

	alias (string) – User-assigned unique identifier associated with model description.

	url (string) – Url of image (figure) to be added.

	caption (string) – Caption to be associated with the image (figure).

	Returns

	UUID of the image (figure) that was added.

	Return type

	UUID

Note

	alias is not currently implemented in the API; kept for future use.

	TODO: Either model_id or alias needs to be provided, with model_id taking precedence over alias.

	TODO: Allow image (figure) to be located locally

Examples

>>> image_id = model_catalog.add_model_image(model_id="196b89a3-e672-4b96-8739-748ba3850254",
 url="http://www.neuron.yale.edu/neuron/sites/default/themes/xchameleon/logo.png",
 caption="NEURON Logo")

	
edit_model_image(image_id='', url=None, caption=None)

	Edit an existing image (figure) metadata.

This allows to edit the metadata of an image (figure) in the model catalog.
The image_id needs to be specified as input parameter.
Only the parameters being updated need to be specified.

	Parameters

	image_id (UUID) – System generated unique identifier associated with image (figure).

	Returns

	UUID of the image (figure) that was edited.

	Return type

	UUID

Examples

>>> image_id = model_catalog.edit_model_image(image_id="2b45e7d4-a7a1-4a31-a287-aee7072e3e75", caption = "Some Logo", url="http://www.somesite.com/logo.png")

	
delete_model_image(image_id='')

	ONLY FOR SUPERUSERS: Delete an image from a model description.

This allows to delete an image (figure) info from the model catalog.
The image_id needs to be specified as input parameter.

	Parameters

	image_id (UUID) – System generated unique identifier associated with image (figure).

Note

	This feature is only for superusers!

Examples

>>> model_catalog.delete_model_image(image_id="2b45e7d4-a7a1-4a31-a287-aee7072e3e75")

Utilities

Miscellaneous methods that help in different aspects of model validation.
Does not require explicit instantiation.

The following methods are available:

	Action

	Method

	View JSON data in web browser

	view_json_tree()

	Prepare test for execution

	prepare_run_test_offline()

	Run the validation test

	run_test_offline()

	Register result with validation service

	upload_test_result()

	Run test and register result

	run_test()

	Download PDF report of test results

	generate_report()

	Obtain score matrix for test results

	generate_score_matrix()

	Get Pandas DataFrame from score matrix

	get_raw_dataframe()

	Display score matrix in web browser

	display_score_matrix_html()

	
hbp_validation_framework.utils.view_json_tree(data)

	Displays the JSON tree structure inside the web browser

This method can be used to view any JSON data, generated by any of the
validation client’s methods, in a tree-like representation.

	Parameters

	data (string) – JSON object represented as a string.

	Returns

	Does not return any data. JSON displayed inside web browser.

	Return type

	None

Examples

>>> model = model_catalog.get_model(alias="HCkt")
>>> from hbp_validation_framework import utils
>>> utils.view_json_tree(model)

	
hbp_validation_framework.utils.prepare_run_test_offline(username='', password=None, environment='production', test_instance_id='', test_id='', test_alias='', test_version='', client_obj=None, **params)

	Gather info necessary for running validation test

This method will select the specified test and prepare a config file
enabling offline execution of the validation test. The observation file
required by the test is also downloaded and stored locally.
The test can be specified in the following ways (in order of priority):

	specify test_instance_id corresponding to test instance in test library

	specify test_id and test_version

3. specify test_alias and test_version
Note: for (2) and (3) above, if test_version is not specified,

then the latest test version is retrieved

	Parameters

	
	username (string) – Your HBP Collaboratory username.

	password (string) – Your HBP Collaboratory password.

	environment (string, optional) – Used to indicate whether being used for development/testing purposes.
Set as production as default for using the production system,
which is appropriate for most users. When set to dev, it uses the
development system. For other values, an external config file would
be read (the latter is currently not implemented).

	test_instance_id (UUID) – System generated unique identifier associated with test instance.

	test_id (UUID) – System generated unique identifier associated with test definition.

	test_alias (string) – User-assigned unique identifier associated with test definition.

	test_version (string) – User-assigned identifier (unique for each test) associated with test instance.

	client_obj (ModelCatalog/TestLibrary object) – Used to easily create a new ModelCatalog/TestLibrary object if either exist already.
Avoids need for repeated authentications; improves performance. Also, helps minimize
being blocked out by the authentication server for repeated authentication requests
(applicable when running several tests in quick succession, e.g. in a loop).

	**params (list) – Keyword arguments to be passed to the Test constructor.

Note

Should be run on node having access to external URLs (i.e. with internet access)

	Returns

	The absolute path of the generated test config file

	Return type

	path

Examples

>>> test_config_file = utils.prepare_run_test_offline(username="shailesh", test_alias="CDT-5", test_version="5.0")

	
hbp_validation_framework.utils.run_test_offline(model='', test_config_file='')

	Run the validation test

This method will accept a model, located locally, run the test specified
via the test config file (generated by prepare_run_test_offline()),
and store the results locally.

	Parameters

	
	model (sciunit.Model) – A sciunit.Model instance.

	test_config_file (string) – Absolute path of the test config file generated by prepare_run_test_offline()

Note

Can be run on node(s) having no access to external URLs (i.e. without internet access).
Also, it is required that the test_config_file and the test_observation_file are located
in the same directory.

	Returns

	The absolute path of the generated test result file

	Return type

	path

Examples

>>> test_result_file = utils.run_test_offline(model=model, test_config_file=test_config_file)

	
hbp_validation_framework.utils.upload_test_result(username='', password=None, environment='production', test_result_file='', storage_collab_id='', register_result=True, client_obj=None)

	Register the result with the Validation Service

This method will register the validation result specified via the test result file
(generated by run_test_offline()) with the validation service.

	Parameters

	
	username (string) – Your HBP Collaboratory username.

	password (string) – Your HBP Collaboratory password.

	environment (string, optional) – Used to indicate whether being used for development/testing purposes.
Set as production as default for using the production system,
which is appropriate for most users. When set to dev, it uses the
development system. For other values, an external config file would
be read (the latter is currently not implemented).

	test_result_file (string) – Absolute path of the test result file generated by run_test_offline()

	storage_collab_id (string) – Collab ID where output files should be stored; if empty, stored in model’s host Collab.

	register_result (boolean) – Specify whether the test results are to be scored on the validation framework.
Default is set as True.

	client_obj (ModelCatalog/TestLibrary object) – Used to easily create a new ModelCatalog/TestLibrary object if either exist already.
Avoids need for repeated authentications; improves performance. Also, helps minimize
being blocked out by the authentication server for repeated authentication requests
(applicable when running several tests in quick succession, e.g. in a loop).

Note

Should be run on node having access to external URLs (i.e. with internet access)

	Returns

	
	UUID – UUID of the test result that has been created.

	object – score object evaluated by the test.

Examples

>>> result_id, score = utils.upload_test_result(username="shailesh", test_result_file=test_result_file)

	
hbp_validation_framework.utils.run_test(username='', password=None, environment='production', model='', test_instance_id='', test_id='', test_alias='', test_version='', storage_collab_id='', register_result=True, client_obj=None, **params)

	Run validation test and register result

This will execute the following methods by relaying the output of one to the next:
1. prepare_run_test_offline()
2. run_test_offline()
3. upload_test_result()

	Parameters

	
	username (string) – Your HBP Collaboratory username.

	password (string) – Your HBP Collaboratory password.

	environment (string, optional) – Used to indicate whether being used for development/testing purposes.
Set as production as default for using the production system,
which is appropriate for most users. When set to dev, it uses the
development system. For other values, an external config file would
be read (the latter is currently not implemented).

	model (sciunit.Model) – A sciunit.Model instance.

	test_instance_id (UUID) – System generated unique identifier associated with test instance.

	test_id (UUID) – System generated unique identifier associated with test definition.

	test_alias (string) – User-assigned unique identifier associated with test definition.

	test_version (string) – User-assigned identifier (unique for each test) associated with test instance.

	storage_collab_id (string) – Collab ID where output files should be stored; if empty, stored in model’s host Collab.

	register_result (boolean) – Specify whether the test results are to be scored on the validation framework.
Default is set as True.

	client_obj (ModelCatalog/TestLibrary object) – Used to easily create a new ModelCatalog/TestLibrary object if either exist already.
Avoids need for repeated authentications; improves performance. Also, helps minimize
being blocked out by the authentication server for repeated authentication requests
(applicable when running several tests in quick succession, e.g. in a loop).

	**params (list) – Keyword arguments to be passed to the Test constructor.

Note

Should be run on node having access to external URLs (i.e. with internet access)

	Returns

	
	UUID – UUID of the test result that has been created.

	object – score object evaluated by the test.

Examples

>>> result_id, score = utils.run_test(username="HBP_USERNAME", password="HBP_PASSWORD" environment="production", model=cell_model, test_alias="basalg_msn_d1", test_version="1.0", storage_collab_id="8123", register_result=True)

	
hbp_validation_framework.utils.generate_report(username='', password=None, environment='production', result_list=[], only_combined=True, client_obj=None)

	Generates and downloads a PDF report of test results

This method will generate and download a PDF report of the specified
test results. The report will consist of all information relevant to
that particular result, such as:

	result info

	model info

	model instance info

	test info

	test instance info

	output files associated with result

	Parameters

	
	username (string) – Your HBP collaboratory username.

	environment (string, optional) – Used to indicate whether being used for development/testing purposes.
Set as production as default for using the production system,
which is appropriate for most users. When set to dev, it uses the
development system. For other values, an external config file would
be read (the latter is currently not implemented).

	result_list (list) – List of result UUIDs that need to be included in report.

	only_combined (boolean, optional) – Indicates whether only a single combined PDF should be saved. Set to
True as default. When set to False, then n+2 PDFs will be saved,
where n is the number of valid result UUIDs. These would include:

	Combined PDF report

	Summary of call to generate_report()

	One PDF for each valid result UUID

	client_obj (ModelCatalog/TestLibrary object) – Used to easily create a new ModelCatalog/TestLibrary object if either exist already.
Avoids need for repeated authentications; improves performance. Also, helps minimize
being blocked out by the authentication server for repeated authentication requests
(applicable when running several tests in quick succession, e.g. in a loop).

	Returns

	
	list – List of valid UUIDs for which the PDF report was generated

	path – The absolute path of the generated report

Examples

>>> result_list = ["a618a6b1-e92e-4ac6-955a-7b8c6859285a", "793e5852-761b-4801-84cb-53af6f6c1acf"]
>>> valid_uuids, report_path = utils.generate_report(username="shailesh", result_list=result_list)

	
hbp_validation_framework.utils.generate_score_matrix(username='', password=None, environment='production', model_list=[], model_instance_list=[], test_list=[], test_instance_list=[], result_list=[], collab_id=None, client_obj=None)

	Generates a styled pandas dataframe with score matrix

This method will generate a styled pandas dataframe for the specified test results.
Each row will correspond to a particular model instance, and the columns
correspond to the test instances.

	Parameters

	
	username (string) – Your HBP collaboratory username.

	environment (string, optional) – Used to indicate whether being used for development/testing purposes.
Set as production as default for using the production system,
which is appropriate for most users. When set to dev, it uses the
development system. For other values, an external config file would
be read (the latter is currently not implemented).

	model_list (list) – List of model UUIDs or aliases for which score matrix is to be generated.

	model_instance_list (list) – List of model instance UUIDs for which score matrix is to be generated.

	test_list (list) – List of test UUIDs or aliases for which score matrix is to be generated.

	test_instance_list (list) – List of test instance UUIDs for which score matrix is to be generated.

	result_list (list) – List of result UUIDs for which score matrix is to be generated.

	collab_id (string, optional) – Collaboratory ID where hyperlinks to results are to be redirected.
If unspecified, the scores will not have clickable hyperlinks.

	client_obj (ModelCatalog/TestLibrary object) – Used to easily create a new ModelCatalog/TestLibrary object if either exist already.
Avoids need for repeated authentications; improves performance. Also, helps minimize
being blocked out by the authentication server for repeated authentication requests
(applicable when running several tests in quick succession, e.g. in a loop).

Note

Only the latest score entry from specified input for a particular
model instance and test instance combination will be selectedself.
To get the raw (unstyled) dataframe, use get_raw_dataframe()

	Returns

	
	pandas.io.formats.style.Styler – A 2-dimensional matrix representation of the scores

	list – List of entries from specified input that could not be resolved and thus ignored

Examples

>>> result_list = ["a618a6b1-e92e-4ac6-955a-7b8c6859285a", "793e5852-761b-4801-84cb-53af6f6c1acf"]
>>> styled_df, excluded = utils.generate_score_matrix(username="shailesh", result_list=result_list)

	
hbp_validation_framework.utils.get_raw_dataframe(styled_df)

	Creates DataFrame from output of :meth`generate_score_matrix`

This method creates a raw DataFrame objects from its styled variant as
generated by :meth`generate_score_matrix`. The cell values in latter could
contain additional data (i.e. result UUIDs) for creating hyperlinks.
This is filtered out here such that the cell values only contain scores.

	Parameters

	styled_df (pandas.io.formats.style.Styler) – Styled DataFrame object generated by :meth`generate_score_matrix`

	Returns

	A 2-dimensional matrix representation of the scores without any formatting

	Return type

	pandas.core.frame.DataFrame

Examples

>>> df = utils.get_raw_dataframe(styled_df)

	
hbp_validation_framework.utils.display_score_matrix_html(styled_df=None, df=None)

	Displays score matrix generated from :meth`generate_score_matrix` inside web browser

This method displays the scoring matrix generated by :meth`generate_score_matrix`
inside a web browser. Input can either be the styled DataFrame object generated by
:meth`generate_score_matrix` or the raw DataFrame object from :meth`get_raw_dataframe`.

	Parameters

	
	styled_df (pandas.io.formats.style.Styler) – Styled DataFrame object generated by :meth`generate_score_matrix`

	df (pandas.core.frame.DataFrame) – DataFrame object generated by :meth`get_raw_dataframe`

	Returns

	Does not return any data. JSON displayed inside web browser.

	Return type

	None

Examples

>>> utils.display_score_matrix_html(styled_df)

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hbp_validation_framework	

 	
 	
 hbp_validation_framework.utils	

Index

 A
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | P
 | R
 | T
 | U
 | V

A

 	
 	add_model_image() (hbp_validation_framework.ModelCatalog method)

 	add_model_instance() (hbp_validation_framework.ModelCatalog method)

 	
 	add_test() (hbp_validation_framework.TestLibrary method)

 	add_test_instance() (hbp_validation_framework.TestLibrary method)

D

 	
 	delete_model() (hbp_validation_framework.ModelCatalog method)

 	delete_model_image() (hbp_validation_framework.ModelCatalog method)

 	delete_model_instance() (hbp_validation_framework.ModelCatalog method)

 	delete_result() (hbp_validation_framework.TestLibrary method)

 	
 	delete_test() (hbp_validation_framework.TestLibrary method)

 	delete_test_instance() (hbp_validation_framework.TestLibrary method)

 	display_score_matrix_html() (in module hbp_validation_framework.utils)

 	download_model_instance() (hbp_validation_framework.ModelCatalog method)

E

 	
 	edit_model() (hbp_validation_framework.ModelCatalog method)

 	edit_model_image() (hbp_validation_framework.ModelCatalog method)

 	
 	edit_model_instance() (hbp_validation_framework.ModelCatalog method)

 	edit_test() (hbp_validation_framework.TestLibrary method)

 	edit_test_instance() (hbp_validation_framework.TestLibrary method)

F

 	
 	find_model_instance_else_add() (hbp_validation_framework.ModelCatalog method)

G

 	
 	generate_report() (in module hbp_validation_framework.utils)

 	generate_score_matrix() (in module hbp_validation_framework.utils)

 	get_attribute_options() (hbp_validation_framework.ModelCatalog method)

 	(hbp_validation_framework.TestLibrary method)

 	get_model() (hbp_validation_framework.ModelCatalog method)

 	get_model_image() (hbp_validation_framework.ModelCatalog method)

 	
 	get_model_instance() (hbp_validation_framework.ModelCatalog method)

 	get_raw_dataframe() (in module hbp_validation_framework.utils)

 	get_result() (hbp_validation_framework.TestLibrary method)

 	get_test_definition() (hbp_validation_framework.TestLibrary method)

 	get_test_instance() (hbp_validation_framework.TestLibrary method)

 	get_validation_test() (hbp_validation_framework.TestLibrary method)

H

 	
 	hbp_validation_framework (module)

 	
 	hbp_validation_framework.utils (module)

L

 	
 	list_model_images() (hbp_validation_framework.ModelCatalog method)

 	list_model_instances() (hbp_validation_framework.ModelCatalog method)

 	list_models() (hbp_validation_framework.ModelCatalog method)

 	
 	list_results() (hbp_validation_framework.TestLibrary method)

 	list_test_instances() (hbp_validation_framework.TestLibrary method)

 	list_tests() (hbp_validation_framework.TestLibrary method)

M

 	
 	ModelCatalog (class in hbp_validation_framework)

P

 	
 	prepare_run_test_offline() (in module hbp_validation_framework.utils)

R

 	
 	register_model() (hbp_validation_framework.ModelCatalog method)

 	register_result() (hbp_validation_framework.TestLibrary method)

 	
 	run_test() (in module hbp_validation_framework.utils)

 	run_test_offline() (in module hbp_validation_framework.utils)

T

 	
 	TestLibrary (class in hbp_validation_framework)

U

 	
 	upload_test_result() (in module hbp_validation_framework.utils)

V

 	
 	view_json_tree() (in module hbp_validation_framework.utils)

 nav.xhtml

 Table of Contents

 		
 HBP Validation Framework - Python Client: Documentation

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

